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ABSTRACT 
 
 
 

UPPER MANTLE REFLECTIVITY BENEATH AN INTRACRATONIC BASIN:  

INSIGHTS INTO THE BEHAVIOR OF THE MANTLE  

BENEATH THE ILLINOIS BASIN  

 
 
 

Maxwell S. Okure  

Department of Geology  

Master of Science 

 
 
 

Reflectivity images of the lower crust and uppermost mantle beneath the Illinois basin have been 

derived from reprocessing of several hundred kilometers of industry seismic reflection data using extended 

vibroseis recorrelation.  The recorrelation was based on extending an originally 4-s correlated record, 

acquired with a 16-s sweep from 14 to 126 Hz, to the absolute limit of the full 20 s (~70 km) listening 

travel time.  The reconstructed bandwidth includes frequency components suitable for imaging structures 

from signals received from both sedimentary basin reflectors and those received from reflectors in the deep 

crust and upper mantle.  Mantle and sub-Moho reflectors are imaged down to 18 s two-way travel time 

(~62 km) and are observed on intersecting profiles generally dipping to the southwest and striking 

northwest-southeast.  Occasional Moho reflections are also observed across the profiles (~12 s or ~38 km) 

while reflectivity in the lower crust is generally marked by intermittent horizontal packages and short, 

gently dipping reflections and diffraction segments.  The presence of newly observed mantle reflectivity 

beneath the Illinois basin indicates significant upper mantle heterogeneity, relative to other parts of the 

USA studied using reflection methods. The relatively isolated occurrence of mantle reflections beneath the 

basin makes it difficult to uniquely infer their origin.  However, available geologic and geophysical 
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constraints, especially from geochemical and geochronological studies of drilled basement rocks, 

effectively limit the possibilities to: (1) remnants or “scars” of sub-crustal processes associated with 

lithospheric extension or delamination related to the melting of the Proterozoic crust that led to the 

emplacement of the granite–rhyolite province that underlies much of USA Midcontinent; or (2) 

deformation caused by plate subduction associated with the hypothetical accretion of a juvenile arc to the 

pre-1.6 Ga southern margin of the Laurentian continent.   
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Introduction 

As observed from over a quarter century of deep seismic reflection profiling of the continents, Earth's 

crust is highly structured in terms of physical properties contrasts.  On the other hand, the uppermost sub-

continental mantle is usually devoid of similar reflectivity contrasts (Steer et al., 1998).  Remarkable 

exceptions, however, have been well documented beneath convergent orogens within the British 

Caledonides (McGeary and Warner, 1985; Snyder and Flack, 1990; McBride et al., 1995; Warner et al., 

1996; Snyder et al., 1997), the Baltic Shield (BABEL Working Group, 1991), the southern Uralide orogen 

(Knapp et al., 1996), the northwestern Canadian Shield (Wopmay orogen and Slave Province) (Cook et al., 

1998; Cook et al., 1999), as well as beneath contemporary plate boundaries (Melhuish et al., 2004).  Much 

of the deep seismic work where mantle structures have been imaged has been across existing and ancient 

plate convergent boundaries (e.g., subduction zones).  Not surprisingly, mantle reflectors are most 

commonly explained in the context of subduction processes (e.g., Warner et al., 1996).  Mantle reflectors 

have accordingly been interpreted as shear surfaces associated with the subduction of one lithospheric plate 

beneath another (Synder and Flack, 1990; Cook and Vasudevan, 2003).  Such interpretations are often 

supported by the orientation of the mantle reflector(s) with respect to lower crustal reflectivity. For 

example, dipping mantle reflectors with an orientation that is similar to known compressional belt at the 

surface may be reasonably interpreted as compressional in origin.   

The purpose of this study is to present the results of reprocessing of industry vibroseis seismic reflection 

profiles for expected mantle travel times from the Illinois basin that reveal some of the first clear dipping 

sub-Moho and mantle reflectors in the USA. Seismic reflectivity within the upper mantle lithosphere is a 

very uncommon feature throughout the world. Our study provides a rare opportunity to observe and study 

signatures of ancient mantle processes in an intra-cratonic basin context.  Understanding the development 

of this reflectivity will provide greater insight into upper mantle processes in a poorly known area of 

Precambrian lithosphere beneath a presently stable craton.  We will also suggest a mechanism that may 

have contributed to the subsequent early Paleozoic development of the Illinois basin.   
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Regional Setting 

Geology 

The Illinois basin (Fig. 1) is an oval depression covering an area of approximately 285,000 km2 in parts 

of Illinois, Indiana, and Kentucky (Kolata and Nelson, 1997).  It is one of several large cratonic basins that 

developed on Precambrian crust of North America (Leighton and Kolata, 1990) and contains about 500,000 

km3 of primarily Cambrian through Pennsylvanian sedimentary rocks having a known maximum thickness 

of about 7600 m (Buschbach and Kolata, 1990; Goetz et al., 1992).  The evolution of the basin has been 

influenced by several tectonic episodes, beginning with late Precambrian-Cambrian subsidence in east-

central Illinois and east-central Indiana and failed rifting (Reelfoot rift and Rough Creek graben) in the 

southernmost part of the basin (Kolata and Nelson, 1997; McBride et al., 2003).  Between Late Cambrian 

and Early Permian time, the basin experienced widespread subsidence, developing into a broad southwest-

plunging trough that extended to the cratonic margin (Kolata, 1991).  The basin began to assume its present 

oval shape in the late Paleozoic with the rising of the Pascola arch until the Reelfoot rift once again began 

to subside in the Late Cretaceous, ultimately forming the Mississippi embayment of the Gulf Coastal Plain 

(Schwalb, 1969).   

The basin overlies an extensive granite-rhyolite terrane commonly referred to as the Eastern Granite-

Rhyolite Province (Fig. 1).  This province has been described as either a few-kilometer thick veneer or 

isolated igneous intrusions that are part of a large igneous province extending from northern Mexico to 

eastern Québec (Lidiak, 1996; Karlstrom et al., 1999).  The basement rocks have been interpreted as 

anorogenic igneous based on geochemical analyses, the lack of metamorphism commonly associated with 

convergent plate boundaries, and the absence of deformation (Bickford et al., 1986).  The lack of basement 

rocks with cal-alkaline chemistry (Shuster, 2001) further suggests an anorogenic environment.  Bickford et 

al. (1986) suggest that the granites and rhyolites are underlain by crust produced by anatectic melting of the 

southeastward continuation of the older Proterozoic Central Plains Orogen (Fig. 1), while Van Schmus et 

al. (1996) suggest that the deep crust was created from a parent magma generated from a mantle source just 

slightly older than the granites and rhyolites themselves.  Van Schmus et al. (1996) proposed that multiple 

juvenile terranes were accreted from the southeast onto an older Paleoproterozoic Laurentian continental 

margin in order to develop this deeper crust.  The locus for this accretion has been defined by a line (Fig. 1) 
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striking northeast from northwestern Texas to southeastern Michigan based on Sm-Nd studies. This line is 

interpreted to mark a rifted or foreland continental margin (Van Schmus et al., 1996).  A common element 

of several of the proposed theories for the development of this igneous province is that extension of the 

lithosphere and heating of the crust are required in order to produce the high-silica granitic melts in the 

uppermost crust (e.g., Bickford et al., 1986).  Schneider et al. (2004) have proposed that, in general, the 

amalgamation of the Laurentian continent along its southern Archean cratonic boundary during the 

Proterozoic involved northwest-directed convergence and subduction, which accommodated the southward 

growth of the USA Midcontinent.   

Superimposed on the granite-rhyolite terrane is a large area underlain by a thick sub-Mt. Simon (i.e., 

?late Precambrian) sedimentary basin centered around western Ohio, northeastern Kentucky, and southern 

Indiana immediately to the east of the study area (“Middle Run Formation” (Shrake et al., 1991; Drahovzal 

and Harris, 1992; Wickstrom et al., 1992).  The actual age of this arkosic sandstone is unknown and could 

be early Cambrian to Proterozoic (Wolfe et al., 1993).   

 

Geophysics 

Prominent “layered” reflectivity in the upper crust (~1.5-4.0 s traveltime, ~ 12 km depth) has been 

documented from deep seismic reflection profiles across the Illinois basin (“Centralia sequence”; Pratt et 

al., 1992; Drahovzal, 1997; Potter et al., 1997; McBride and Kolata, 1999; McBride et al., 2003).  Pratt et 

al. (1992) and Lidiak (1996) have described the layered reflectivity as a hypothetical Proterozoic 

sedimentary basin or tabular mafic igneous bodies associated with either granitic basement or Proterozoic 

sedimentary strata.  Maps of the distribution of the layered reflectivity in the shallow uppermost crust (e.g., 

Fig. 2) were first produced by McBride and Kolata (1999) and McBride et al. (2003), based on original and 

reprocessed industry seismic reflection data from the central part of the basin.  On the basis of the geometry 

and internal structure, and seismic stratigraphy of the shallow layered reflectivity, they suggest a late 

Proterozoic rift basin or collapsed caldera complex for the local origin of the granite-rhyolite province 

underlying the central Illinois basin. In such case, the province could be a result of the intrusion/extrusion 

of material following decompression melting in the lithosphere associated with rifting and extension.   
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Although other geophysical information on the Precambrian crust below the Illinois basin is somewhat 

limited, sufficient exists to characterize the velocity structure of the crust and uppermost mantle, as well as 

regional crustal thickness for the study area (e.g., see compilation by Braile (1989) and Heigold (1991)).  

Regional seismic refraction data have been used to obtain one-dimensional and two-dimensional velocity-

depth models of the crust, which are available for converting reflection travel times to depth (Braile et al., 

1981; Ginzburg et al., 1983; Braile, 1989; Catchings, 1999).  The results of two seismic refraction profiles 

over the Illinois basin have been reported by Braile et al. (1981), which indicate almost identical Moho 

depths and bulk velocity structures (and thus traveltime to the Moho discontinuity), and a contour map of 

crustal thickness for the central USA has been presented by Braile (1989).  From an east-west refraction 

profile across the southern margin of the study area (Fig. 1), Braile et al (1981) indicated a generalized 

upper Precambrian crustal compressional wave velocity of 6.13 km/s and a middle and lower crustal 

velocity of 6.74 km/s, which are comparable to values derived for the upper and middle crust from 

refraction profiles for the northern Mississippi embayment to the south (6.20 km/s and 6.60 km/s for the 

upper and middle crust, respectively) (Ginzburg et al., 1983).  Braile et al. (1981) also determined a crustal 

thickness of about 37.5 km, which is consistent with more recent compilation maps of crustal thickness for 

the study area that show a value between 35 and 40 km (Braile, 1989; Mooney and Braile, 1989; Chulick 

and Mooney, 1999; W. D. Mooney, 2000, written communication).  A seismic refraction profile acquired 

over the southwestern flank of the Illinois basin stretching from Memphis, Tennessee northward to just east 

of St. Louis, Missouri provides a model where crustal velocities and crustal thickness are greater than for 

our study area (Catchings, 1999); however, as shown by the compilation by Braile (1989), a significant 

increase in crustal thickness is expected beneath the western flank of the Illinois basin toward the Ozark 

dome ~80 km northwest of the Pascola arch (Fig. 1).  We note that Catchings (1999)’s north-south velocity 

model shows a flat mantle refractor just above 60 km depth.   

Converting both of Braile et al. (1981)’s one-dimensional velocity models from depth to time gives 

traveltimes to the Moho of 11.9 s (for 37.5 km from their “Line 2 and 6”) and 12.0 s (for 38.4 km from 

their “Line 1”).  The seismic velocity for uppermost mantle within the area is given as 8.1 km/s in Braile et 

al. (1981).  Although actual mantle xenolith samples are not available for the study area, Helffrich and 
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Wood (2001) observed that peridotites appear to be the dominant rock type of the mantle with a typical 

seismic velocity of about 8.2 km/s.   

The results from seismic refraction modeling for the Illinois basin agree generally with results from 

teleseismic receiver analysis, which give Moho depths of about 40 km (Akinci et al., 1999).  Although 

previous dedicated deep seismic reflection profiles have been acquired and processed to 20 s over the 

Illinois basin and adjacent areas by the Consortium for Continental Reflection Profiling (COCORP), 

coherent reflections beyond about 4 s, including lower crustal or Moho reflections, were not commonly 

observed, and no mantle reflections were ever described (Pratt et al., 1989).   

 

 

Methodology  

 Reprocessing of several hundred kilometers of industry seismic reflection data using extended 

vibroseis correlation was performed. The original industry reflection profiles were acquired along three 

regional lines (Fig. 2, S-1, S-2 and S-3, totaling 386 km length), which intersected COCORP Illinois Line 1 

(Pratt et al., 1989; 1992) and other proprietary industry profiles (McBride and Kolata, 1999).  The profiles 

were surveyed in the mid-1980s and used a source interval of 165 ft (~50 m), recorded over a 20,460 ft 

(~6.23 km) geophone array with 120 channels (24 geophones per channel).   

The initial processing step was to extend the original 4 s correlated record to the absolute limit of the full 

20 s listening time using the “self-truncating” method of vibroseis recorrelation (Okaya and Jarchow, 1989).  

This method uses the full-frequency bandwidth for the duration of the original correlated data, beyond 

which the correlation proceeds with a linearly decreasing bandwidth due to loss of first the highest 

frequencies followed by gradually lower frequency components (Fig. 3).  The correlation operator is 

allowed to truncate automatically using as much of the operator length as possible for reflections after the 4-

s full-bandwidth record length.  This approach is practical for basement targets because, higher frequencies 

tend to be progressively attenuated with increasing travel time.  This means that the loss of high-frequency 

signal with extended correlation is apt to follow the loss due to attenuation.  The very long recorrelation 

time in our case was viable due to the unusually long listening time for the record, the long source signal 

(sweep duration = 16 s), and its broad, linear increase of frequency with time from 14 to 126 Hz (Figures 3, 
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4, 5, and 6).  Thus, the frequency content of the recorrelated data for expected lower crust-uppermost mantle 

traveltimes (e.g., 10-16 s; Fig. 6) mimicked that for the previous COCORP deep seismic reflection program 

(Pratt et al., 1989).  The unusual combination of broad frequency bandwidth and long sweep length and 

listening time provides frequency components suitable for simultaneously imaging reflectors from shallow 

sedimentary rocks, the deep crust, and the uppermost mantle.   

The post-correlation reprocessing was designed to enhance the low-frequency portion of the signal 

returning from the lower crust and upper mantle.  The critical processing steps included: (1) application of a 

8-12.5-40-50 Hz Ormsby frequency filter, (2) subsample to 8 ms, (3) test migrations over a range of 

velocity functions expressed as per cent of the 2-D interval velocity (0, 70-100 %), (4) application of a post-

stack low-apparent velocity rejection filter using a limited aperture tau-p (zero offset traveltime intercept-

slowness) transform (e.g., Yilmaz, 1987), (5) application of residual static corrections.  Several migration 

trials using a phase-shift method were performed to avoid overmigration artifacts and to determine which 

apparently linear events might be diffractions.  Both migrated and unmigrated sections were examined for 

our study.  We present the results of the reprocessing as interpretive line drawings of the previously 

processed migrated records from 0 to 7 s combined with the results of the new deep recorrelation processing 

from 7 to 20 s from unmigrated stacked sections.  The deeper results are presented as unmigrated in order to 

mitigate possible overmigration artifacts and to enable the direct recognition of diffracted events.  Those 

parts of the deep records that are critical to our interpretation are shown as excerpts of the migrated form of 

the data.  The description and interpretation of upper crustal reflector structure are presented elsewhere 

(McBride and Kolata, 1999; McBride et al., 2003).   

 

 

Results and Interpretation    

 Our observations from the reprocessing results are grouped as (a) upper crustal reflectivity (0-7 s), 

(b) lower crustal reflectivity and the Moho discontinuity (7-12 s), and (c) uppermost mantle reflectivity 

(12-~20 s).  Figures 7, 8 and 9 are line drawings of the reprocessed seismic profiles S-1, S-2 and S-3, 

respectively, from 0 to 20 s.  In our two-dimensional mapping of reflectors, we incorporated the COCORP 

profiles where appropriate.  In general, the results of the new reprocessing of the records for the 10-20 s 
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interval are successful.  The quality of images of lower crustal reflectivity and the Moho exceeds that of the 

COCORP profiles from the area.  The reprocessed profiles show intermittent but clear images of lower 

crustal reflections and diffractions, the Moho, and sub-Moho and upper mantle reflections.   

 

Upper crustal reflectivity  

Distinct nearly horizontal reflectors define the uppermost sedimentary units of the crust corresponding 

to the Paleozoic Illinois basin (Heigold, 1991; Pratt et al., 1992; McBride and Kolata, 1999).  McBride et 

al. (2003) provided a detailed description of the upper crustal reflectivity of interpreted Proterozoic seismic 

stratigraphic sequences (“Centralia sequence”) using 10 s (~30 km) record sections.  In their study, they 

noted that beneath the Paleozoic strata of the Illinois basin, deeper Proterozoic reflectivity is complex and 

highly structured and appears to be embedded in or part of (or both) of the eastern granite-rhyolite 

province.  They described the overall Proterozoic structure in the ~1.5 to 6-7 s interval as dish- or wedge-

shaped reflection packages bound by a narrow reflection band that is subhorizontal to moderately dipping 

(Figures 7 and 8).  The geometry of reflections in some places strongly suggests stratiform unconformity-

bounded deposits that could be interpreted as seismic stratigraphic sequences of sedimentary and/or 

volcaniclastic layers.   

Pratt et al. (1992) originally described the “Centralia sequence” as a hypothetical Proterozoic 

sedimentary basin based on the Illinois and Indiana COCORP profiles (Fig. 2).  Based on a loose network 

of industry seismic profiles, McBride and Kolata (1999) and McBride et al. (2003) subsequently 

subdivided Precambrian reflectivity into three prominent sequences A, B and C as shown in Fig. 7, and 

produced iso-traveltime structural contour maps.  The Enterprise subsequence is a distinct bowl-shaped 

succession of reflective units in the upper part of the Centralia sequence immediately beneath the Cambrian 

Mt. Simon Sandstone with distinct pinch-out boundaries (Figures 7, 8 and 9).  McBride et al. (2003) 

suggested that this subsequence consists of unconformity-bound depositional units.   

 

Lower crustal reflectivity and the Moho  

Lower crustal reflectors (7-12 s) appear as intermittent horizontal packages and short gently dipping 

reflections and diffractions.  As seen for other areas of the Midcontinent from deep reflection profiles 
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(Brown et al., 1983; Serpa et al., 1984), large areas of diffractions and associated short reflection segments 

dominate much of the section.  Upon migration, the diffractive zones collapse into discontinuous “pods” of 

segmented or dipping reflectors.   

A series of horizontal reflectors appears between 11.3 and 11.6 s (~37 km depth) on profile S-2 near 

the intersection of S-1 (Fig. 10).  The crustal section immediately above this level is marked by complex 

reflector geometries including dipping reflections that are truncated by the deeper horizontal reflections.  

Increasing the migration velocity resolves partly collapsed diffractions into sub-horizontal and dipping 

reflections (Fig. 11).  Below about 11.6 s, the section is remarkably blank except for deeper dipping events, 

discussed below.  This vertical division in reflectivity is also observed on the eastern end of the profile, at 

the same traveltime at which a gradual vertical cessation of reflectivity is observed (Fig. 11).  The lower 

crustal reflection pattern on S-1 matches that of S-2.  On line S-1 prominent horizontal to sub-horizontal 

reflectors appear at ~ 11.5 s, especially beneath the middle of the profile.  These reflectors also mark a 

division between complex lower crustal reflectivity and a greatly reduced reflectivity below, except for 

prominent isolated, individual reflection packages at a much greater traveltime.  On profile S-3, limited 

intermittent horizontal reflections appear within the 11.5-12.5 s interval (Fig. 12).  As on the previous two 

profiles, this interval marks a boundary between crustal reflectivity and blank or prominent dipping 

reflections below.   

The arrival time for the horizontal reflectivity or boundary between reflective and poorly reflective 

section corresponds to the Moho discontinuity as defined from modeling of local seismic refraction profiles 

and regional crustal thickness compilations as described above.  We thus interpret this reflectivity boundary 

as the Moho, which corresponds to depths of 37-39 km.  The Moho as observed on the S profiles is 

typically defined worldwide by the limit of lower crustal subhorizontal reflectivity (e.g., Klemperer et al., 

1986; Prussen, 1991; BABEL Working Group, 1993).  Although the Moho is also occasionally observable 

as a distinct horizontal reflector, it is more commonly defined by a cessation of crustal reflectivity that 

conforms well with refraction data modeling.  Although the lower crust beneath the Illinois basin is 

reflective, a so-called “layered lower crust” as observed for example beneath some rifted provinces such as 

the North Sea and Basin and Range (e.g., Warner, 1990), is not observed.  Amplitude decay curves 

computed from stacked common-depth point records with no amplitude correction or deconvolution 
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processing (e.g., Fig. 4) typically show a strong decay to 6-7 s, followed by a gently sloping or flat curve to 

the bottom of the record; however, the decay is frequently interrupted by a subtle change in slope and/or a 

localized amplitude peak around 11.5 s, which is consistent with the observed loss of reflectivity beyond 

about 11.5 s.   

On a published line drawing interpretation of the COCORP deep seismic reflection profile Illinois-1 

(Pratt et al., 1989), which orthogonally intersects S-1, a base of crustal reflectivity is not usually clearly 

discernible, although Pratt et al. (1989) suggested a possible Moho arrival time of 15-16 s; however, this 

estimate conflicts with the results of local and regional seismic velocity models, as discussed above, and so 

is deemed incorrect.  Deeper portions of the Illinois-1 have not actually been published (except in an atlas 

available from Cornell University) or discussed directly in the literature.  For this reason, we have applied a 

post-stack reprocessing of Illinois-1, equivalent to that applied to the industry data, in order to compare the 

two data sets (Fig. 13).  Although the reprocessed industry data are better quality and show greater signal 

penetration, the basic features of the profiles, where they intersect or are located near one another, are 

similar.  Near the intersection of S-1 and Illinois-1, faint but recognizable reflections from the lower crust 

(~7-12 s) appear on the latter (Fig. 13) like those seen on S-1 with a lowermost reflection arriving at 11.5 s, 

which is close to the interpreted Moho reflection observed from S-1.   

 

Upper most mantle reflectivity  

Migrated reflections observed beyond the Moho arrival time of 12 s (see migrated data excerpts, 

Figures 11, 15, and 16) are considered mantle features.  Due to the close proximity in arrival time between 

some sub-Moho reflections and the Moho itself, we have examined mantle arrivals in unmigrated form and 

with various migration trials using different velocities (up to 8 km/s).  In the profiles mantle reflectors 

appear as discrete, isolated gently dipping events before and after migration.  They appear beneath zones of 

comparatively significant lower crustal reflectivity in some cases, even seeming to materialize within 

“columns” of higher signal-noise ratio due perhaps to localized zones of greater signal penetration.  The 

“column” effect is especially noticeable on line S-2 (Fig. 10), and where the lateral extent of a mantle 

reflector is interrupted by a “column” of poor coherency (e.g., line S-1, Fig. 14), a greater lateral extent is 

implied.  We note that this effect is also observed on the COCORP Illinois profiles, although with much 
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greater severity (Pratt et al., 1992).  However, other than this relationship, the mantle reflectors cannot 

usually be directly correlated with lower crustal structural trends.  Because, for the most part, reflector 

attitude in the lower crust is irregular, correlation with mantle reflectors is difficult.   

As seen from true amplitude decay curves, integrated for the region of the mantle reflectivity on line S-

1 (Fig. 4), amplitude levels for returning signal from the mantle is equivalent to that from the Moho 

reflection.  Frequency spectra (Fig. 6) show peak values of 21-34 Hz at 14-16 s in the mantle, which is 

within the expected frequency based on the theoretical recorrelation bandwidth of 14 Hz to ~42 Hz at 16 s 

(Fig. 5).  A 21-34 Hz signal would provide a favorable vertical resolution limit of 96-60 m for a mantle P-

wave velocity (8.1 km/s).   

On north-south profile line S-1 a prominent group of mantle reflections (“a”) arrives at 15.25 s (51 km 

depth) at km 82.5, just north of line S2 (Fig. 7 and 15).  This reflection group has a horizontal length of 

16.5 km and gentle apparent dip of about 20o towards the south (unmigrated).  Using a simple “straight-

ray” migration, the migrated apparent dip would be expected to be 1-2o steeper.  Further south along the 

profile a less prominent reflection group (“b”) comes in at 16.45 s (56.34 km depth) and is collinear with 

“a” and thus is likely a southward extension of it.  Still further south, a third short almost collinear 

reflection segment (“c”) occurs at 14.5 s (48.4 km depth) below km 47.  As stated above, lower crustal 

reflectivity appears more intense above these mantle reflectors but does not show any clear correlation with 

any of them.   

On the southernmost east-west line S-2, a 5.5-km long subhorizontal mantle event (“d”) is seen at 

approximately 14.75 s (49.4 km depth) below km 87 (Figures 8 and 11).  This arrival is complex and 

appears to be largely, but not entirely, diffractive.  This arrival is corroborated by the nearby COCORP 

Illinois Line 1, which shows a similar, but less well resolved feature at about the same travel time.  A series 

of short, but distinct, planar mantle reflections appears further east at “e”, extending from 15.5 s to 17 s (km 

53–59) just beneath the intersection of lines S-2 and S-1.  This series dips apparently 16o west and extends 

for a length of 10.6 km and is collinear with a deeper set of reflections arriving beneath km 65 to the west.  

This series correlates in time exactly with the lengthier south-dipping reflections observed from S-1 and 

thus provides corroboration as well as invaluable cross-line control for strike and dip.  The mantle reflector 

image on S-2 is more complex and consists of four or five distinct, mostly west-dipping, segments.  On 
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both orthogonal profiles, the mantle reflector appears as an isolated feature, surrounded by a mostly 

reflection-free section, and does not continue up to the Moho.  Because the reflectors correlate on 

intersecting profiles and behave in a stable manner upon seismic migration (Fig. 11), it is clear that they are 

not arriving significantly from out of the plane of section.   

Along profile S-3, prominent mantle reflectivity is observed, but at lesser travel time.  This is expected 

since the longest mantle reflector sequence on the north-south line S1 is dipping to the south along the line 

of profile.  Here reflectors appear just beneath the Moho, centered below km 52 and dip more steeply into 

the mantle.  In this instance, the attitude of lower crustal reflectivity matches somewhat (i.e., is collinear) 

with mantle features on the migrated records (Figures 9 and 16).  The prominent mantle reflector group 

here (“g”) dips from just beneath a horizontal Moho level, and then extends to about 14 s (46.4 km depth) 

with a length of 22 km.  The reflector group is however not clearly imaged for its entire length and different 

segments make up a sequence of events with a more or less uniform orientation at an apparent dip of 21o 

west.  Where the S-3 reflector sequence projects toward the intersection with S-1, a few poorly resolved 

south-dipping reflections project away on S-1.  Because the S-3 sub-Moho is so close in time to the Moho 

level of 12.0-12.5 s, we have produced migration spectra for this part of the profile using velocities of 0 (no 

migration), 6 km/s (bulk crust value), and 8 km/s (bulk uppermost mantle value) (Fig. 17).  As can be seen 

from this exercise, crustal events (the Moho and a diffraction pattern, Fig. 17) migrate properly at 6 km/s 

and are clearly overmigrated at 8 km/s.  On the other hand, the sub-Moho events remain planar at 8 km/s 

and remain below the Moho level.   

The correlation of unmigrated reflections across intersecting profiles enabled the computation of true 

dip and strike.  This not only corroborates our observations, but provides the first case of obtaining an 

attitude for a mantle reflector for deep seismic reflection profiles in the USA.  The true dip estimate is 

derived using apparent dips and gives a value of 24o true dip, in the direction S 42o W (222o), and strikes 

NW-SE.   
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Discussion  

Considering the rarity of mantle reflections on dedicated deep seismic reflection profiles in the United 

States (Best, 1990), the imaging of mantle reflections on the reprocessed industry profiles from the Illinois 

basin is remarkable.  Mantle reflections observed from common depth-point seismic data are infrequent, 

especially in the United States, where thousands of kilometers of dedicated deep reflection data have been 

acquired during the past 30 years.  The only significant case of sub-Moho mantle reflectivity beyond the 

Illinois basin in the USA is from COCORP profiles over the Williston basin, which have been interpreted to 

show dipping and subhorizontal reflections within the uppermost mantle (Baird et al., 1995).  The unusual 

expression of mantle reflectors beneath the Illinois basin may be related to the unusually high Lg coda Q in 

the central Midcontinent (Baqer and Mitchell, 1998; Mitchell and Jemberie, 2001) or to the superior 

imaging related to the relatively broad frequency band (14-126 Hz) vibroseis and long-record (20 s) source. 

A high Lg coda Q corresponds to low attenuation of sound wave signals and consequently, higher quality 

image resolution and data. Lg coda Q values (at 1 Hz) for the study area are about 650 and characterize a 

rather restricted region of high Q centered over the Illinois basin and nearby areas between Missouri and 

Ohio.  The only other area of the conterminous USA where Q values approach or exceed those of the study 

area are in the New York-Pennsylvania region.  Mantle reflectors could thus exist in other parts of the 

continental lithosphere of the USA where deep seismic reflection profiles have been surveyed, but cannot 

easily be imaged by seismic reflection method due to high levels of signal attenuation.   

The mantle reflections, which appear as isolated events in an otherwise non-reflective uppermost 

mantle, cannot be uniquely correlated to any particular geologic feature in the Paleozoic basin or in the crust 

as observed from the new seismic sections.  Therefore, reaching a unique interpretation is difficult.  A 

similar ambiguity exists for strong mantle reflectors observed on a 50-s explosive source reflection profile 

over the southern Ural Mountains that are interpretable as either being preserved from the original Paleozoic 

deformation of the orogen or representing an unknown younger structural and thermal process that did not 

perceptibly affect the overlying crust (Knapp et al., 1996).  Due to the virtual lack of basement or even 

Paleozoic bedrock for the Illinois basin, we must rely on limited drillhole-derived information on the 

underlying Proterozoic rocks in order to provide some constraints for interpreting the origin of the mantle 

structure.  The emplacement of igneous rocks of the granite-rhyolite province has been associated with both 
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compressional (subduction-island arc systems) and extensional (rift) regimes, which involve plate tectonic 

processes that may preserve reflector structure within mantle lithosphere.  We also rely on better 

constrained analogs for mantle reflector interpretations from the North Sea, western Canada and the Baltic 

Sea (Cook and Vasudevan, 2003; Snyder and Flack, 1990; BABEL Working Group, 1993) 

 

Analogs for Mantle Reflectivity 

Cook et al. (1998) and Cook and Vasudevan (2003) have interpreted dipping mantle reflections from 

beneath the Precambrian Slave Province and Wopmay Orogen of northwestern Canada to be remnants of a 

Proterozoic subduction zone based on their projection up into a mapped relict Mesoproterozoic subduction 

structure.  Based on geometric relationships of the upper mantle reflections to the subduction zone and the 

Moho, three interpretations were proposed: (1) shear zones within ultramafic rocks, (2) layered 

metamorphic rocks, or (3) igneous intrusive layers.  For the well-studied “Flannan” and “W” mantle 

reflectors beneath the West Orkney basin north of Scotland, Warner et al. (1996) suggested that the 

geometry, modeled physical properties, and geologic setting of the reflectors indicate fragments of 

eclogitized oceanic crust.  The mantle reflectors are thus relicts of a pre-Caledonian (a Silurian orogeny 

affecting northwest Europe and eastern North America) oceanic subduction now preserved in the 

continental lithosphere.  Alternatively, Flack et al. (1990) and Reston (1990) interpreted the “Flannan” and 

other mantle reflectors beneath the margins of rift basins of the North Sea area in terms of Mesozoic rifting 

processes affecting the upper mantle (e.g., ductile shear zones).  Beneath the northern Baltic Shield near the 

Proterozoic-Archean boundary (BABEL Working Group, 1990), dipping mantle reflectors can be traced 

upward to the Moho discontinuity or into the lowermost crust and are interpreted to represent relict 

Precambrian subduction zone surfaces.   

 

Constraints from Basement Geology for the USA Midcontinent 

The eastern granite-rhyolite province that underlies much of the Illinois basin has been described by 

Lidiak (1996) as part of a 3000-km long belt of post-1.6 Ga mainly felsic igneous rocks that extends across 

much of North America (“Transcontinental Proterozoic province”, (Fig. 1), which consists mainly of 

epizonal to mesozonal (shallow to mid crustal depth intrusive) granite and related rhyolite that were 
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extruded on and emplaced within the older Proterozoic rocks.  These felsic igneous rocks have A-type 

(anorogenic) chemical affinities and accumulated in a within-plate tectonic environment, part of a mid-

Proterozoic supercontinent at 1.5 Ga. The Felsic rocks are associated with subordinate within-plate tholeiitic 

basalt, which is taken to imply magmatism associated with crustal extension in mid-Proterozoic time, or as 

magmatism associated with some Proterozoic “hot spot” which would account for their vast occurrence.  

All of the rocks are essentially unmetamorphosed, and none are penetratively deformed.   

Geochemical analyses by Nelson and DePaolo (1985) and Lidiak (1996) suggest that the felsic rocks 

were sourced from partial melting of lower continental crust.  Similarly, a thermal response to rifting and 

extension along a passive continental margin followed by continental collision and large scale mantle up-

welling has been proposed (Aberg, 1988; Windley, 1989; Hoffman, 1989b).  Alternatively, Bowring et al. 

(1988, 1991) and Van Schmus et al. (1996) suggest a mantle source region for the granites and rhyolites to 

lie just south of a boundary defined by Nd isotopic data extending from southeast Oklahoma northeastwards 

to central Indiana, inferred as the southeastern limit of pre-1.6 Ga crust (Fig. 1).  This isotopically defined 

boundary thus represents a Proterozoic continental margin situated just north of our region of mapped 

mantle reflectivity (Fig. 1).  Felsic rocks south of this boundary thus represent 1.5 Ga material of juvenile 

mantle origin, such as that possibly derived from a continental magmatic arc along a convergent continental 

plate boundary and thus implying direct crust-mantle interaction (via subduction) (Van Schmus and 

Bickford, 1981; Van Schmus et al., 1996).  Menuge et al. (2002) proposed that the rhyolites may have 

formed in an extensional back arc setting within the continental plate overlying an active or recently active, 

subduction zone.  Furthermore, Rivers and Corrigan (2000) noted that many of the features of the 

Mesoproterozoic geology of southeastern Laurentia can be explained as the product of arc and back arc 

evolution rather than anorogenic processes such as anatexis.  Van der Lee (2001) argued from earthquake 

tomography that plate tectonic processes may have been active in North America since about 3.0 Ga 

(Archean) with what she referred to as “protoplates” that were much smaller than present-day tectonic 

plates.  She inferred that the Laurentian continent, the predecessor of the North American continent, was 

assembled by subduction at about 1.0 Ga.  In a general way, the southeastern border of the Archean and 

older Proterozoic provinces of Laurentia, as defined by Van der Lee (2001), lies generally north of the study 

area.    
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The geological scenarios described above imply that an ancient rifting or subduction environment 

existed along the margin of a Precambrian supercontinent in which upper mantle may have been deformed.  

For the subduction scenario, accreting crustal material could have been thrust or imbricated into the mantle 

during plate collision.  Our observed mantle reflectors could accordingly be considered to be shear surfaces.  

The reflectivity of such shear surfaces could result from alteration of existing rock due to heating and fluid 

activity associated with frictional sliding along the boundary.  Proterozoic reconstructions described by Van 

Schmus et al. (1996) and Schneider et al. (2004) for the USA Midcontinent are suggestive of northwestward 

subduction.  For a subduction zone hypothesis, our observations of a mantle reflector dipping to the 

southwest would imply localized complexity along the ancient continental margin beneath the present-day 

Illinois basin or a local reversal in subduction zone polarity.  As pointed out above, an obvious problem 

with the subduction zone hypothesis for the felsic rocks beneath the area is the lack of deformation or 

metamorphism.   

An alternative (Knapp et al., 2005) to the subduction hypothesis for the study area is lithospheric 

delamination, which involves loss of material from the base of the lithosphere by gravitational instability 

(Bird, 1979), detachment of oceanic slabs (Sacks and Secor, 1990), or foundering of a mafic lower crust 

and/or upper mantle by phase changes (Nelson, 1991, 1992; Kay and Kay, 1993).  Nelson (1992) suggested 

that the mantle part of the lithosphere beneath the continents is negatively buoyant with respect to the 

underlying asthenosphere and therefore, if a suitable flaw existed, might peel away from the overlying crust 

and founder into the deeper mantle. The expected consequences of delamination to the overlying crust are 

rapid uplift and extension and rapid heating of the lower crust.  Heating is due to the combined effects of 

emplacing hot asthenosphere against or near the base of the crust and intrusion into the lower crust of 

basaltic magma produced by decompression melting of the asthenosphere, which must rise to replace the 

foundering lithospheric root.  This could have then lead to the intrusion/extrusion of the granites and 

rhyolites beneath the Illinois basin derived from partial melts due to relative buoyancy.   

Block and Royden (1990) and Bird (1991) postulated that in some regions wholesale flow of the lower 

crust has occurred on a geologically short time scale, a process usually associated with delamination. They 

further noted that flow of lower crustal material (lower crustal flow), as a process, can be explained as a 

consequence of decompression melting following delamination. The absence of crustal roots beneath old 
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collision orogens and the presence of a sharp regionally flat Moho, as observed on deep seismic profiles 

worldwide (Allmendinger et al., 1987; Klemperer and Matthews, 1987; Bois, 1991; Cook et al., 1992) 

including our reprocessed seismic profiles, can also be considered as suggestive of lower crustal flow, and 

ultimately, delamination.  On deep reflection profiles in general and for our case, the Moho beneath ancient 

collisional orogens is typically sharp, flat and from a structural point of view, “late” in sequence in that it 

either crosscuts dipping reflectors in the overlying crust or it acts as a decollement for overlying dipping 

reflectors (Cook et al., 1992; Cook and Varsek, 1994).   

The concept of delamination and associated lower crustal flow provides an alternative to Precambrian 

subduction for the occurrence of dipping reflectors in the mantle beneath the Illinois basin.  In this 

interpretation, the mantle reflectors could represent either “scars” of delamination in the form of intact 

pieces of former lower crust that has been partially detached from the lower crust or the remains of slab 

imbrication as shown, for example, by Cook et al. (1998) for western Canada.   

 

Relation of Mantle Reflectivity to Illinois Basin (and Proto-Basin?) 

The anomalous mantle reflectivity is localized directly beneath the deepest part of the Illinois basin north 

of the Reelfoot rift (Fig. 1) as well as directly beneath the Cambrian Mt. Simon depocenter and the 

?Proterozoic Enterprise Sequence (Fig. 18) and underlying interpreted Proterozoic seismic stratigraphic 

sequences (“Enterprise Subsequence”) (McBride and Kolata, 1999; McBride et al., 2003) (Figures 7, 8, and 

9).  It therefore seems reasonable to speculate that the upper crustal features could be associated either with 

processes that originally formed the mantle reflectors or with the static effect of the mantle reflectors 

themselves, perhaps as a “buried load” of higher density that influenced subsidence of the basin.  McBride 

et al. (2003) suggested that the Proterozoic reflective sequences buried within the upper crust represent 

either a collapsed caldera complex or an irregularly shaped rift basin, either of which could be related to the 

production of the granites and rhyolites of the eastern granite-rhyolite province that underlies the Illinois 

basin. This interpretation accords well with the idea that the basin overlies a crust and uppermost mantle 

that underwent significant thermo-magmatic activity, which provides a context for interpreting the unusual 

occurrence of mantle reflectivity here.  Superposing the contours of the basal Cambrian unit of the Illinois 

basin and deeper sequences on the mantle reflector contours (Fig. 18) shows a limited degree of parallelism.        
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The fact that the mantle reflector pattern observed for our study mimics Paleozoic and shallow basement 

sequence trends suggests that a structurally anomalous mantle may have exerted some control on 

subsidence processes for the Illinois basin and any Proterozoic precursors structures.  McBride et al. (2003) 

proposed that the upper crustal Proterozoic seismic sequences acted as a precursor to the very early part of 

the Illinois basin subsidence during the deposition of the Cambrian Mt. Simon Sandstone (Fig. 18), after 

which subsidence shifted to the south over the Reelfoot rift (Fig. 1).  We suggest in like manner that the 

mantle reflector pattern may have played an analogous role; however, the actual controlling mechanism is 

not clear.   

Baird et al. (1995) previously documented a case of dipping reflectors beneath the northern Williston 

basin in Montana and North Dakota from COCORP deep seismic reflection profiles interpreted as mantle in 

origin although no Moho reflection was identified.  The Williston basin is in many ways closely analogous 

to the Illinois basin in having an elliptical outline and possessing no obvious underlying rift or major basin-

bounding normal faults.  Baird et al. (1995) suggested that the interpreted mantle reflectors represent a 

preserved crustal root of previous Precambrian collisional orogeny (Hudsonian), now preserved as remnant 

crustal “keel” underwent eclogite-facies metamorphism, which then overprinted the base of a non-reflective 

lower crust.  The concomitant metamorphic phase change in the lower crust could be a cause for subsequent 

Paleozoic basin subsidence (e.g., Hamdani et al., 1994).   

Other instances of sub-Moho mantle reflectors beneath sedimentary basins have been described in 

terms of deformational structures that accommodated basin extension and subsidence (e.g., North Sea, 

Klemperer and White, 1989; Flack et al., 1990).  Klemperer and White (1989) used deep seismic reflection 

data from the North Sea rift in order to show that mantle reflector patterns mimicked crustal features 

associated with rifting.  Mantle reflectors were found to lie symmetrically beneath the margins of the rift, 

which was interpreted to represent coaxial stretching of the crust facilitated by shearing in the uppermost 

mantle.  For our study, such a broad perspective for the Illinois basin and the surrounding Midcontinent is 

not available from deep seismic reflection profiles; however, we can conclude that no other instances of 

dipping mantle reflectors have been observed on profiles in areas adjacent to the basin in Illinois, Indiana, 

Missouri, and Arkansas (Pratt et al., 1989).  Thus we cannot yet see evidence for interpreting our results as 

part of a symmetric system of mantle reflectivity beneath the Illinois basin.   
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Conclusions  

 This study presents the results of reprocessing several hundred kilometers of industry seismic 

reflection profiles in which the original 4-s records were extended to 20 s.  In this way, ordinary “spec 

data” seismic reflection data were transformed into deep seismic profiles penetrating as deep as the upper 

part of the Earth’s mantle.  Beneath the mostly undeformed Paleozoic sedimentary sequences of the Illinois 

basin lie layered Proterozoic basements rocks that appear to have formed as either a Proterozoic 

sedimentary basin or as tabular intrusive bodies or both.  Isolated dipping reflectors exist within the mantle 

lithosphere beneath these sequences and constitute one of the first observations of mantle reflectivity in the 

continental USA and the first with 3D control.  Based on similar occurrences of uppermost mantle 

reflectors in other parts of the world and on the attitude of those observed in this study, lithospheric plate 

subduction is proposed for one possible origin.  This could have resulted from geodynamic processes 

associated with terrane collision in Proterozoic time.  The occurrence of granites and rhyolites (A-type) 

with properties indicative of formation in an extensional back arc setting within a continental plate 

overlying a subduction zone supports this possibility.  The probable existence of plate tectonism in general 

as early as 3.0 Ga also supports this as does the location of the southern border of the supercontinent of 

Laurentia immediately north of the study area.  However certain anticipated subduction related evidence is 

not seen, such as metamorphosed rock complexes (mélange) and associated deformation structures.  

 An alternative process involving lithospheric delamination of the mantle lithosphere resulting 

from Proterozoic terrane collision and accretion is more consistent with observed data because actual 

structural effects anticipated from such process can be seen. The intrusion/extrusion of the granites and 

rhyolites in this case could be related to melting caused by lower crustal magmatism resulting from 

decompression associated with delamination.  The presence of a sharp, flat Moho and the absence of crustal 

roots beneath the present-day Illinois basin are suggestive of crustal flow, a process resulting from 

delamination.  

  Finally, the mantle structure trends suggest some control on processes leading to the development 

of overlying younger features in the region. Depth contours for mantle structures, Proterozoic basement 

rock sequences and Paleozoic basin strata all fall within the same location and correlate considerably well 

suggesting structural relation between them.  
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Figure captions 

Figure 1. Index location map of the research area showing the primary geologic (basement) and tectonic 

boundaries of central USA. The thin dashed oval line represents the extent of the Illinois basin, while the 

asterisks symbol showing the location of the observed mantle reflectors. The light shaded region delimits 

the Eastern Granite Rhyolite Province (EGRP), while the dark shaded area represents the Midcontinent rift 

system (MCR). The thick northeast-southwest oriented dashed line indicates the inferred southern limit of 

pre-1.6 Ga crust, as defined by Nd isotope data in Van Schmus et al., (1996) while the thinner dashed line 

indicates the southeastern limit of the Laurentian continental margin as defined in van der Lee, (2001). 

GFTZ indicates the Grenville Front tectonic zone and SCPO is the southern Central Plains orogen.  

 

Figure 2.  Map of research area showing primary survey lines used for the study (S1, S2 & S3, bold straight 

red lines). IL, IN, and KY are the states of Illinois, Indiana and Kentucky respectively (solid black, curved 

line boundaries). IL-1, IL-2 and IN-1 are COCORP profiles. Dashed faint lines indicate county boundaries, 

while the dashed thick black line marks the boundary of the pre-1.6 Ga and post 1.6 Ga crust defined by Nd 

isotope data (Van Schmus et al., 1996). The thick green bold contours represent mantle reflector attitude at 

depth corresponding to 14.5 s two-way travel time in the northeast to 17.5 s in the southwest while the 

dashed blue contours represent the base of the Precambrian “layered” rocks (Centralia sequence, McBride 

and Kolata, 1999) and illustrate the attitude of Proterozoic basement. Contour values are in seconds (two-

way travel time). 

 

Figure 3. Frequency time graph illustrating frequency bandwidth variation with extended recorrelation 

seismic data as opposed to conventional (4 second) correlation modified from Okaya and Jarchow, (1989). 

 

Figure 4. Graph illustrating natural amplitude decay with travel time from average traces over area of 

prominent mantle reflector on N-S section, S-1. Amplitude changes indicate greater impedance contrast 

between media. Continued amplitude decay to bottom of record implies continued signal penetration.  

 

Figure 5. Graph illustrating typical variation (decrease) in frequency bandwidth with travel time.  
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Figure 6. Frequency spectra illustration over mantle reflectivity indicating persistence of usable frequency 

content into the upper mantle. Vertical resolution at mantle velocity of approx. 100m is still possible below 

14 seconds (vertical axis).  

 

Figure 7. Line drawing of S-1 seismic reflection profile showing mantle reflectors a, b and c and crustal 

reflector trends (Crustal reflectivity description in McBride et al., 2003).  

 

Figure 8. Line drawing of S-2 seismic reflection profile showing mantle reflectors d, e and f and crustal 

reflectors (Crustal reflectivity description in McBride et al., 2003).  

 

Figure 9. Line drawing of S-3 seismic reflection profile showing mantle reflector g, and crustal reflectors 

(Crustal reflectivity description in McBride et al., 2003). 

 

Figure 10. Excerpt section from seismic reflection profile S-2 illustrating mantle reflector “d” (unmigrated). 

Two-way travel times are in seconds (vertical axis) and correspond to depths between 45 and 55 km from 

the surface. 

 

Figure 11. Excerpt section from seismic reflection profile S-2 illustrating mantle reflector intersection with 

that on S-1 profile (migrated). Two-way travel times are in seconds (vertical axis) and correspond to depths 

between 45 and 55 km from the surface. 

 

Figure 12. Excerpt section from seismic reflection profile S-3 illustrating mantle reflector “g” (unmigrated). 

Vertical axis represents two-way travel time in seconds and arrow indicates reflection Moho time. 

 

Figure 13. Excerpt section from COCORP IL-1 LINE seismic line profile illustrating “column effect” on 

data. Reflectors at 11.5 s travel time (vertical axis) indicate the reflection Moho. S-1 indicates the 

intersection of seismic line profile S-1 with the profile. 
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Figure 14. Top; Excerpt section from seismic reflection profile S-1 illustrating mantle reflector “a” 

(unmigrated). Two-way travel times in seconds (vertical axis) correspond to depths between 45 and 55 km 

from the surface. Bottom; Excerpt from profile S-1 showing mantle reflectors “a” and “b”, with coherency 

filter applied (courtesy of Arie van der Velden, University of Calgary) similar to the filters applied to 

Lithoprobe seismic data (e.g., Cook et al., (1999)). Horizontal line indicates the reflection Moho at 12 s. 

 

Figure 15. Excerpt section from seismic reflection profile S-1 illustrating mantle reflector “a” (migrated). 

Two-way travel times in seconds (vertical axis) correspond to depths between 45 and 55 km from the 

surface.  

 

Figure 16. Excerpt section from seismic reflection profile S-3 illustrating mantle reflector “g” (migrated). 

Vertical axis represents two-way travel time in seconds and the horizontal line indicates reflection Moho 

time. 

 

Figure 17. Excerpts of seismic profile line 3 (migration spectra) illustrating effects of different velocity 

migrations on observed mantle reflectors.  

 

Figure 18. Contours relation map illustrating the consistency between mantle reflector structural contours 

and those of the Proterozoic basement and Paleozoic Illinois basin when superimposed. The thick solid 

contours represent the mantle reflectors while the thin solid lines are contours to the base of the Proterozoic 

sequence. The dashed line contourings represent the attitude and extent of the base of the Paleozoic 

sequences of the Illinois basin. 

 

Figure 19. Proterozoic continent reconstruction map illustrating the then location of the study just below 

the southeastern margin of the Laurentian continent. SGRP is the southern Granite-Rhyolite Province.  
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Figure 20.  Model for lithospheric delamination in the Proterozoic. The future Illinois basin may have 

developed on the resulting accreted complex.  
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Figure 5.  
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Figure 7. 
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Figure 8.  
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Figure 9. 
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Figure 10.  
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Figure 11. 

 
41



www.manaraa.com

 

 

 

km

g

Figure 12.  

9.500

10.000

10.500

11.000

11.500

12.000

12.500

1100.0 1200.0 1300.0SP:

9.500

10.000

10.500

11.000

11.500

12.000

12.500

13.000

S-1

 

Figure 13. 
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Figure 16.  
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Figure 18. 
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Figure 19. 

 

Figure 20.  

 

 

 

 48



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 49


	Upper mantle reflectivity beneath an intracratonic basin: insights into the behavior of the mantle beneath Illinois basin.
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	REGIONAL SETTING
	Geology
	Geophysics
	METHODOLOGY
	RESULTS AND INTERPRETATION
	Upper crustal reflectivity
	Lower crustal reflectivity and the Moho
	Upper most mantle reflectivity
	DISCUSSION
	Analogs for mantle reflectivity
	Constraints form basement geology for the USA Midcontinent
	Relation of mantle reflectivity to Illinois basin (and Proto-basin?)
	CONCLUSIONS
	REFERENCES
	FIGURE CAPTIONS

